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a b s t r a c t

We present a method for accelerating the acquisition of phase-encoded velocity images by the use of
compressed sensing (CS), a technique that exploits the observation that an under-sampled signal can
be accurately reconstructed by utilising the prior knowledge that it is sparse or compressible. We present
results of both simulated and experimental measurements of liquid flow through a packed bed of spher-
ical glass beads. For this system, the best image reconstruction used a spatial finite-differences transform.
The reconstruction was further improved by utilising prior knowledge of the liquid distribution within
the image. Using this approach, we demonstrate that for a sampling fraction of �30% of the full k-space
data set, the velocity can be recovered with a relative error of 11%, which is below the visually detectable
limit. Furthermore, the error in the total flow measured using the CS reconstruction is <3% for sampling
fractions P30%. Thus, quantitative velocity images were obtained in a third of the acquisition time
required using conventional imaging. The reduction in data acquisition time can also be exploited in
acquiring images at a higher spatial resolution, which increases the accuracy of the measurements by
reducing errors arising from partial volume effects. To illustrate this, the CS algorithm was used to recon-
struct gas-phase velocity images at a spatial resolution of 230 lm � 230 lm. Images at this spatial reso-
lution are prohibitively time-consuming to acquire using full k-space sampling techniques.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic Resonance (MR) imaging is a powerful tool for imag-
ing the velocity distribution in single- and multi-phase flows. How-
ever, the time taken to acquire a velocity image can be
prohibitively long, particularly when the velocity distribution var-
ies with time or the signal-to-noise ratio (SNR) is low. Compressed
sensing (CS), a technique now attracting considerable interest in
the signal processing field, has recently been demonstrated to offer
the opportunity to significantly reduce the acquisition time of MR
images [1]. In the present paper a CS algorithm is developed and
implemented to measure the velocity distribution in gas and liquid
flows. This work reports the first practical demonstration of CS to
phase-encoded, as opposed to magnitude, MR data.

Phase-encoded MR velocity imaging is used in medical imaging
to study the distribution and variation in flow in blood vessels and
around the heart, particularly with reference to congenital heart
disease and the heart valves [2]. MR velocity imaging has also been
widely used in the physical sciences [3,4]. Some examples of sys-
tems studied include the rheology of complex fluids [5], the varia-
tion in the velocity of liquids flowing through packed beds [6], and
ll rights reserved.
granular flows [7,8]. The main advantage of MR for studying flow is
that it is possible to non-invasively image systems without the use
of a tracer. However, a major drawback of the technique, in both
medical and non-medical applications, is the acquisition time of
the measurement. In the medical field, long acquisition times
(�min) necessitate breath hold or triggered acquisition techniques
that, although impressive, are susceptible to artefacts and may be
impractical in certain cases. In non-medical applications, long
acquisition times require very stable systems and can prohibit
the study of certain features, e.g. fine vortices in turbulent flow.
To overcome these limitations many studies have explored meth-
ods to increase the temporal resolution of velocity-encoded imag-
ing (e.g. [9–13]). These ‘‘ultra-fast” (<1 s) techniques have all been
demonstrated to provide a substantial improvement in the
temporal resolution. However, despite these advances, each has
limitations in terms of the systems that can be studied and the
trade-off between spatial and temporal resolution.

CS provides a method of reducing the data acquisition times
characteristic of many imaging techniques, including the ultra-fast
MR measurements described above. CS utilises the fact that images
are highly compressible, and certain linear transforms render them
sparse, that is, they can be accurately represented by only a few
non-zero elements. Sparsity in a transform domain allows good
reconstruction from an under-sampled set of measurements in
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k-space. CS has been demonstrated for spin density imaging in
both medical [1] and non-medical [14] applications and to Fourier
encoded velocity imaging [15], but has not previously been applied
to phase-encoded imaging of, for example, velocity.

Our interest in implementing CS is twofold. First, we seek to in-
crease the temporal resolution with which we can study dynamic
systems. Second, in systems in which an increase in spatial resolu-
tion is required, we are able to exploit the reduction in data acqui-
sition times to achieve greater signal averaging, thereby decreasing
the voxel size from which we can acquire a desired SNR. To illus-
trate this, we report a case study of velocity imaging of gas flow
within a packed bed of spheres. Recently, we reported the ability
of MR to acquire maps of the local velocity distribution in both
gas and liquid flow through packed beds [16]. However, it was
noted in this work that the low SNR associated with data acquisi-
tion of the gas phase limited the resolution that was achievable in a
practical image acquisition time to 714 lm � 714 lm, compared
with 179 lm � 179 lm for the liquid phase for a slice thickness
of 1.5 mm. Whilst this work demonstrated how gas and liquid
velocity varied within the packed bed, greater spatial resolution
of the gas-phase velocity image is needed for determination of
the gas and liquid velocities at the gas–liquid interface. This is of
particular interest in identifying the appropriate closure relation-
ships required to improve the accuracy of computational fluid
dynamics simulations of gas–liquid flows. Implementation of CS
to increase spatial resolution in gas velocity imaging represents a
significant step forward in acquiring the data we need to improve
the implementation of these numerical codes.

The paper is structured as follows. First, we build on a CS algo-
rithm of Lustig et al. [1] for spin density imaging and develop it for
use with phase-encoded velocity imaging. The CS reconstruction is
tested on model data sets for water flow through a packed bed. We
use the model data sets to study the effects of various parameters
of the reconstruction and set them to get the best reconstruction
for a given SNR. This approach was then implemented on a real
system and the CS algorithm was used to reconstruct images of
liquid-phase flow through a packed bed. The flow rate from the
liquid-phase measurements obtained using both full k-space sam-
pling and reduced k-space sampling with CS reconstruction was
compared with the measured macroscopic flow rate to confirm
that the measurements were quantitative. Finally, the technique
was extended to the application of velocity imaging of gas flows
at a spatial resolution that was not practical using conventional
MR imaging techniques.
2. Theory – compressed sensing

It is well-established that acquisition times of MR imaging exper-
iments can be decreased by using sparse k-space sampling schemes
[17–21]. These methods become preferable when the dynamics of
the system are too fast to capture using conventional, full k-space
techniques or when the SNR is low, thus requiring many signal aver-
ages. When k-space is not fully sampled, linear recovery methods
will lead to lossy reconstruction and large artefacts in the resulting
image. CS provides a way to achieve performance beyond the limita-
tions of linear methods, and reduces the artefacts arising from sparse
sampling to recover the underlying image.

CS allows accurate (and possibly even perfect) reconstructions
of dramatically under-sampled k-space data sets by utilising the
principles behind image compression [22,23]. Typical image com-
pression algorithms take advantage of sparsity by first sampling
the full image, computing a transform, e.g. the discrete cosine
transform or the wavelet transform, and then discarding the small
coefficients. The resulting transform domain data will contain few
non-zero coefficients. Thus, the image is said to have a sparse rep-
resentation in the transform domain. The original image can be
reconstructed from this sparse representation with minimal loss
of information by applying the inverse transform. These ideas
underlie the popular JPEG and JPEG-2000 image compression algo-
rithms [24]. CS takes this idea a step further and suggests that
near-perfect reconstructions may be possible from a much smaller
number of ‘incoherent’ initial samples – which capture just enough
information to reconstruct the image. In this context, ‘incoherent’
means that the under-sampling causes incoherent artefacts, or
more formally that the sampling operator must not be easily (spar-
sely) represented in the transform domain [22]. These ‘incoherent
samples’ are fused with the prior knowledge that the image is
sparse in a transform domain, and the image is then recovered
using a non-linear reconstruction method (e.g. [23,25–27]). A vari-
ety of transforms exist in which images can be sparsely repre-
sented and in which the under-sampling leads to incoherent
artefacts. Examples of these transforms include spatial finite-dif-
ferences (i.e. computing differences of neighbouring pixels), wave-
let and curvelet [28] transforms. Each of these transforms will be
appropriate for different types of images; all three are investigated
in this work.

The image reconstruction algorithm that we have used is a var-
iant of basis pursuit [1,23], which uses the ‘1-norm as a surrogate
for sparsity. The ‘1-norm formulation is attractive not only because
it leads to a convex optimisation problem which can be solved by
efficient algorithms, but moreover, it has allowed strong theoreti-
cal analysis of the quality of reconstruction [23,29]. In the follow-
ing paragraphs the optimisation problem required in the CS
reconstruction is stated and details particular to our implementa-
tion for this application to phase-encoded velocity imaging are
summarised.

Consider the case that the image to be reconstructed is stacked
as a vector x, W is the operator that compresses the image from
pixel representation to a sparse representation (e.g. the wavelet
transform), F is the under-sampled Fourier transform mapping
the image domain to k-space and y is a vector containing all the
k-space measurements. The reconstruction is then obtained by
solving the following constrained optimisation problem:

min kWxk1

s:t: kFx� yk2 6 e; ð1Þ

where e is a threshold that can be set to the expected noise level.
The ‘1-norm, kxk1 ¼

P
ijxij, acts as a proxy for sparsity – i.e. mini-

mising the above objective produces an image which has the spars-
est representation in the transform domain whilst remaining
consistent with the acquired measurements. A variety of methods
have been developed to solve Eq. (1), or its unconstrained Lagrang-
ian form

arg min
x

kFx� yk2 þ kkWxk1; ð2Þ

including interior-point methods [25], iterative thresholding [26]
and Bregman iterations [27]. We follow the approach of Lustig
et al. [1] which uses projected conjugate gradients to solve Eq.
(2). Since the objective is convex, the algorithm is guaranteed to
find the global minimum of the function.

2.1. CS for velocity imaging

The basic CS algorithm described above can be improved for
velocity imaging by incorporating additional prior knowledge to
the reconstruction. For example, it has previously been suggested
that the reconstruction can be improved by including the spatial fi-
nite-differences transform in the reconstruction along with an-
other sparse transform [30]. The optimisation problem could
then be expressed as:
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min kWaxk1 þ akWbxk1

s:t: kFx� yk2 6 e; ð3Þ

where Wa is the operator to transform the image into the domain in
which the image is sparse, Wb is the spatial finite-differences or to-
tal variation transform, and a is a weighting parameter that trades
sparsity in each of the two domains. However, in the case of phase-
encoded velocity imaging, as studied here, more specific prior
knowledge is available. When measuring the velocity of a liquid
or gas, the spatial distribution of the liquid or gas is often known
prior to obtaining the image. This prior knowledge can be incorpo-
rated through an additional constraint on the reconstruction. If the
spatial distribution of the signal is given by a binary image mask, M,
which is a vector with a value of 1 where signal is expected and 0
where only noise is expected, then the reconstruction can proceed
by solving a modified optimisation problem:

min kWxk1

s:t: kFx� yk2 6 e ð4Þ
kð1�MÞ : � xk2 6 e2;

where the ‘‘. *” operator is the element by element vector multipli-
cation. The second constraint of this optimisation ensures the
reconstruction minimises the signal intensity that is incorrectly
allocated to the region outside the mask. As with Eq. (1), we solve
Eq. (4) in its unconstrained Lagrangian form:

arg min
x

kFx� yk2 þ k1kWxk1 þ k2kð1�MÞ : � xk2: ð5Þ

The relative weight of each term in the reconstruction is con-
trolled by adjusting the parameters k1 and k2; the values of these
parameters being determined by the characteristics and SNR of
the data. The improvement in the reconstruction achieved by uti-
lising this mask will be examined in Section 4.

The final point, specific to our implementation of CS for acqui-
sition of phase-encoded velocity images, addresses how the detail
of the CS method as described by Eqs. (1)–(5) is modified to handle
phase, as opposed to magnitude, data sets. As is well established,
velocity measurements are achieved by encoding the velocity of
the fluid, V, in the phase of the observed signal, /, over an observa-
tion time, D, using a pair of magnetic field gradients applied with a
strength g and for a duration d:

/ ¼ cgdDV ; ð6Þ

where c is the gyromagnetic ratio of the observed nuclei. To produce
an image, this measurement is combined with imaging gradients such
that the signal in any given pixel of an image, Sm,n, is described by:

Sm;n ¼ qm;n expð�i/m;nÞ ¼ qm;n expð�icgdDVm;nÞ; ð7Þ

where qm,n is the signal magnitude in the pixel m, n. The velocity is
then calculated from the phase of the complex signal in each pixel
of an image. The approach described by Eqs. (1)–(5) above is equally
applicable to both real and complex images. However, it is difficult to
apply CS to the phase data of a complex image directly. Instead the
real and imaginary intensity images are reconstructed using CS and
the phase of the signal is calculated after reconstruction. A similar
approach has previously been used in the denoising of MR images
[e.g. 31] and has been suggested for use with CS [32]. In this approach
the sparse transform is calculated for the real (xr) and imaginary (xi)
components of the image separately and the minimisation is per-
formed over the magnitude of the signal in the transform domain:

arg min
x

kFx� yk2 þ k1kðjWxr þ iWxijÞk1 þ k2kð1�MÞ : � xk2: ð8Þ

The result of this optimisation is a complex image containing
the intensity of the real and imaginary components in each pixel.
Reconstructing the real and imaginary intensity images in this
manner requires a piecewise-smooth variation in signal intensity
in both images. Depending on the Fourier transform algorithm em-
ployed, this may require a rearrangement of the data prior to Fou-
rier transformation according to the shift theorem.
3. Experimental details

All experiments were performed on a Bruker DMX 200 spec-
trometer with a vertical 4.7 T superconducting magnet. The exper-
iments were performed using a 64 mm diameter radiofrequency
(r.f.) coil operating at 199.7 MHz for proton (1H) and 188.3 MHz
for fluorine (19F). The magnet was equipped with a three-axis
shielded gradient producing a maximum gradient strength of
0.136 T m�1 in the x, y, and z directions.

3.1. Development and optimisation of the CS algorithm

To optimise the parameters and transform domain for the CS
reconstruction, a velocity map was obtained from a lattice-Boltz-
mann (LB) simulation of water flowing through a 39 mm diameter
column that was randomly packed with 3 mm diameter spheres.
The geometry for the simulation was derived from a three-dimen-
sional spin-echo MR image of the bed that was obtained at a reso-
lution of 164 lm � 164 lm � 164 lm. This data set was converted
to a binary image and used as input to the LB simulation. The LB
method models the hydrodynamics of a fluid on a mesoscopic
scale, where fluid kinetics are described by probability distribution
functions of the location of particles. The LB code used has been de-
scribed and validated previously [33,34]. The time step for the sim-
ulations was 4.5 � 10�3 s, such that the dimensionless relaxation
was 1, which optimises the simulation accuracy and stability
[33]. The velocity map resulting from the LB simulation was con-
verted to a phase-encoded image suitable for testing the CS algo-
rithm by selecting a single axial (z) slice from the centre of the
image. This velocity image was converted to a phase map by
assuming that the maximum velocity in the image corresponded
to a phase shift of 1.8p radians, thus ensuring that the total range
of velocities was less than 2p radians. The phase map and the bin-
ary signal intensity map were then converted to a complex image,
thus giving real and imaginary intensity data.

The k-space sampling strategy followed the Monte Carlo ap-
proach of Lustig et al. [1] on a Cartesian grid. Firstly, a k-space grid
was chosen based on the desired resolution. This grid was under-
sampled in the dimension corresponding to the phase-encoding
direction. The under-sampling was controlled by constructing a
probability density function (pdf) and randomly drawing indices
from that density. The incoherence of this sampling pattern was
measured by calculating the maximum intensity of the side lobes
of the point spread function in the transform domain. This proce-
dure was repeated 50 times and the sampling pattern with the
lowest intensity interference was chosen. The same procedure
was repeated for each desired image resolution. The sampling pat-
tern was biased to the origin of k-space by using a suitable choice
of pdf: the pdf was calculated using a polynomial decay:

pdf ¼ ð1� rÞp; ð9Þ

where r ¼ k=kmax is the normalised distance from the origin of k-
space. This is beneficial as most of the intensity of real images is
concentrated near the k-space origin [1]. Typically, the pdf was cal-
culated with p = 5/2.

The choice of the parameters k1 and k2 in Eq. (5) is critical to
obtaining a good quality reconstruction using CS. Previously it
has been suggested that the value of the parameters ki can be
determined by solving Eq. (5) for different values, and then choos-
ing ki such that kFx� yk2 � e [1]. In practice, it was found that the
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quality of the reconstruction was not strongly influenced by the
value chosen for ki above a given threshold. Furthermore, this
threshold was approximately the same for all the images in this pa-
per at a given SNR. Therefore, it was possible to optimise the values
of k1 and k2 on one data set and use these values for subsequent
reconstructions at the same SNR.

3.2. Acquisition of velocity images

Velocity images of single-phase liquid and gas flow were ac-
quired using the same pulse sequence, and using the same packed
bed. The bed used was a cylindrical column of inner diameter
27 mm, randomly packed with 5 mm diameter glass spheres. The
column was of length 1 m. Velocity images were obtained using
a spin-echo sequence that was designed to minimise the total echo
time [8,16]. The velocity was encoded using half a period of a sine-
shaped gradient waveform. Two images were acquired, each with
flow-encoding gradient strengths of the same magnitude but oppo-
site direction.

The experimental set-up for acquisition of the liquid-phase
velocity images was as follows. Deionised water was pumped in
a closed circuit by a Verder VG330-10 gear pump and controlled
by a PC-operated Bronkhorst Cori-flow (model M55C4-AAD-11-
K-C) mass flow controller; the flow rate of water was varied from
0 to 60 kg h�1. The T1 relaxation time constant of the water was re-
duced to 50 ms by adding gadolinium chloride to the water at a
concentration of 0.49 g L�1. The flow-encoding gradients were ap-
plied for duration d = 1.19 ms and separated by an observation
time (D) of 3.3 ms. The gradient strength used was varied for dif-
ferent water flow rates to optimise the dynamic range of the veloc-
ity measurement. First, a full k-space acquisition was performed.
Velocity images were obtained with a field-of-view of
30 mm � 30 mm at an in-plane resolution of 178 lm � 178 lm
with a 1.5 mm slice thickness. The repetition time of the experi-
ment was 300 ms and a 4 step phase-cycle was used, giving a total
acquisition time of about 7 min. CS measurements were then per-
formed using the same pulse sequence, with the phase-encoding
gradient set to only acquire the desired lines of k-space; in these
acquisitions only 28% of the k-space raster was sampled. The sam-
pling distribution was determined as described in Section 3.1.

Gas-phase velocity images were acquired on the same packed
bed as used for the liquid-phase studies. Sulphur hexafluoride
(SF6) gas was supplied in a closed circuit using a DILO Piccolo com-
pressor (model B022R01). The gas from the compressor was stored
in a pressure vessel of volume 6 L. Gas was drawn from the pres-
sure vessel and the flow rate was measured using a rotameter
(Brooks Sho-rate 1357/D2B5D1B00000). A bypass line ensured ex-
cess gas was returned to the feed of the compressor. The pressure
in the column was regulated using a back pressure regulator set to
4.9 bar absolute. As for the liquid velocity measurements, in imple-
menting the pulse sequence the flow-encoding gradient strength
was adjusted to optimise the dynamic range of the measurement.
A flow-encoding gradient duration and observation time of 0.5 ms
and 1.9 ms, respectively, were used.

Gas velocity images were acquired using different acquisition
times and at different spatial resolutions. In all cases, the field-
of-view was 29.4 mm � 29.4 mm and the slice thickness was
1.5 mm. The acquisitions were as follows:

(i) A full k-space raster of 64 � 64 data points was acquired giv-
ing a spatial resolution of 460 lm � 460 lm; 512 scans were
acquired with a repetition time of 34 ms, giving a total
acquisition time of 37 min.

(ii) A CS data acquisition was acquired in a total acquisition time
of 37 min, but with an array of 84 � 84 data points, giving a
spatial resolution of 350 lm � 350 lm. For the CS recon-
struction, only 28 points were sampled in the phase-encod-
ing direction and the repetition time was 26 ms. Thus whilst
the same acquisition time was used as in (i), 1536 scans
were acquired compared to the 512 scans when full k-space
sampling was employed. The data points sampled were cho-
sen using the approach outlined in Section 3.1.

(iii) High resolution velocity maps were obtained using a full k-
space raster of 128 � 128 data points, giving a spatial resolu-
tion of 230 lm � 230 lm. The repetition time was 34 ms
and 608 scans were acquired, giving a total imaging time
of 90 min. This was chosen as the practical upper limit for
the duration of a gas-phase velocity imaging pulse sequence.

(iv) CS velocity mapping was performed at a spatial resolution of
230 lm � 230 lm but only sampling 39 data points in the
phase-encoding direction. Thus, 2048 scans were acquired
in a total imaging time of 90 min.
4. Results

The results are reported in two sections. First, a numerical study
is presented which explores the influence of the detail of the recon-
struction algorithm, the number and location of k-space points se-
lected and the noise level on the performance of the CS
reconstruction. Second, CS is applied to reduce the acquisition time
of velocity imaging of single-phase flow of both liquid and gas,
whilst maintaining the accuracy of the total flow measurement
to within ±5% of that recorded with a mass flow controller (liquid)
or rotameter (gas). The measurements on gas-phase flow are pre-
sented at a resolution that was not practicable without the use of
CS.
4.1. Development and optimisation of the CS algorithm on simulated
data

4.1.1. Demonstration of CS
Fig. 1a shows a velocity map obtained from a LB simulation [33]

of water flowing through a packed bed of 3 mm diameter glass
spheres. Since the map was derived from a numerical simulation,
it is essentially free from variations in the signal due to noise
and thus provides an ideal starting point for developing a CS tech-
nique for velocity imaging. This velocity map was converted to a
phase map by assuming that the velocity range in the image corre-
sponded to a phase shift of 1.8p. This was then used to produce a
complex image of the bead pack in which the velocity was encoded
in the phase of the signal. This image was Fourier transformed to
obtain the k-space distribution shown in Fig. 1b, which was then
used to develop the CS technique.

Fig. 2 illustrates the CS reconstruction of the velocity image
shown in Fig. 1. Fig. 2a shows the k-space data points used for
the CS reconstruction. This corresponds to using only 28% of the
full k-space data. The k-space data were under-sampled by remov-
ing entire lines of k-space, consistent with the use of a frequency-
encoded imaging sequence. Fig. 2b shows the 2D velocity image
reconstructed using the CS algorithm described in Section 2 with
the k-space data shown in Fig. 2a. The typical image reconstruction
time for a velocity image such as that in Fig. 2b was �5 min on a
standard desktop PC. Although clearly a subjective measure of
the error, the image in Fig. 2b shows no visually perceptible differ-
ences from the original velocity image shown in Fig. 1a.

The absolute error introduced by under-sampling the k-space
data is shown in Fig. 3. The absolute error is defined as the differ-
ence between the velocity map obtained from the LB simulations
and the velocity map reconstructed using the under-sampled k-
space data. Fig. 3a shows the absolute error that would be obtained
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Fig. 2. Demonstration of a CS reconstruction from under-sampled k-space data. (a) Shows the k-space data points that were selected from the data in Fig. 1b. The data
selected correspond to a sampling fraction of 28%. These data were used to reconstruct the velocity map shown in (b). The velocity map shows excellent agreement with the
original image shown in Fig. 1a.
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if the missing k-space data were replaced by zeros prior to Fourier
transformation. The zero-filled reconstruction shows alternate po-
sitive and negative errors in the phase-encoded (horizontal) direc-
tion. This is expected as under-sampling the k-space data will
increase the width of the point spread function. Thus, regions of
high signal intensity in the image domain will tend to decrease
in intensity and neighbouring regions of low signal intensity will
tend to increase in intensity, leading to the alternating positive
and negative errors in the reconstructed signal. The error obtained
from the CS reconstruction is shown in Fig. 3b. The error shows
only slight systematic variations in the phase-encoded direction.
Errors in the reconstruction will now be considered in more detail.

The proportional reconstruction error within the voxels of the
image associated with flow is:
m m

m
m

m
m

9 
m

39
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3 3
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Fig. 3. Images showing the absolute error in the velocity map reconstructed from the k-s
reconstruction. The error in the CS reconstruction is markedly reduced from that shown
‘2 � error ¼
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i
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s
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i
jMiðViÞj2

r ; ð10Þ
where Vi is the velocity in the ith pixel of the original, fully-sampled,
image, VCS

i is the velocity in the ith pixel of the image reconstructed
from the under-sampled k-space data using CS, and Mi takes the va-
lue of 0 or 1 depending on whether the pixel is solid or water,
respectively. The ‘2-error obtained from Eq. (10) using the (VCS –
V) data shown in Fig. 3b yields a value of 0.11% or 11%, despite only
sampling 28% of the full k-space data set. By comparison, when the
data are zero-filled before Fourier transformation (Fig. 3a), the ‘2-
error
( 1)(mm s-1)

1.5
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-0.8
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pace data in Fig. 2a. The error is shown for (a) a zero-filled reconstruction and (b) CS
in the zero-filled reconstruction.
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error is 23%. Thus, the CS reconstruction has reduced the error by a
factor of 2.

The ‘2-error provides a simple quantitative description of the
accuracy of the reconstruction and therefore will be used through-
out this paper. However, it should be noted that other factors, for
example the range and bias of the error, must also be considered
when defining the accuracy of the reconstruction. These will now
be examined for the data in Fig. 3.

A major concern with applying a non-linear reconstruction
algorithm such as that described in Section 2, is that the error be-
comes biased. For example, the velocity in regions of high velocity
might be systematically under-estimated. Fig. 4 shows a plot of the
error in the velocity obtained from the CS reconstruction as a func-
tion of the fully-sampled velocity. The CS reconstruction shows a
slight bias toward positive error (i.e. to over-estimate the velocity)
for very low velocities, but is essentially randomly scattered about
zero. This indicates that although the CS reconstruction introduces
noise into the velocity distribution, it introduces little bias. By con-
trast, the zero-filled reconstruction shows both a broader distribu-
tion of errors and a significant bias, with low velocities over-
estimated and high velocities under-estimated. It was observed
that if the sampling fraction using CS is decreased further or the
parameters k1 and k2 used in the reconstruction (Eq. (5)) are incor-
rectly set, the CS error may become biased. This effect was most
pronounced in the fine details of the velocity distribution, for
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Fig. 4. Plots of the absolute error associated with a given pixel, obtained from Fig. 3, as a
are for (a) the zero-filled reconstruction and (b) the CS reconstruction.
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Fig. 5. (a) Plot of the rank ordered intensity for the raw image data, the spatial finite-d
image derived from the data in Fig. 1a. The intensity in each case was calculated as the a
from the LB simulation shown in Fig. 1a. These data indicate that most of the energy in th
The absolute value of the spatial finite-differences transform of the real component of t
example in the constrictions between local elements of void space
in the packed bed. However, provided that the images being con-
sidered were similar, e.g. were of different slices in the packed
bed, the optimised sampling fraction and values of k1 and k2 were
approximately the same.

In summary, Figs. 2–4 show that CS can accurately reconstruct
velocity imaging data from as little as 28% of the full k-space data
set. These results demonstrate the significant time reductions that
can be achieved using CS for velocity-encoded imaging. The next
sections will investigate which sparse transforms to use, modifica-
tions to the reconstruction algorithm and how robust the recon-
struction is when the measurement contains noise.

4.1.2. Sparsity in velocity images
The reconstruction of an image using CS utilises the fact that the

image can be represented sparsely in some transform domain. In
the present work, four domains have been considered in which
the image may be sparsely represented. Fig. 5a shows a plot of
the rank ordered intensity (energy) of the image in the image do-
main, and three common transform domains: the spatial finite-dif-
ferences domain, a wavelet domain and a curvelet [28] domain.
The intensity in each case was calculated as the absolute value of
the transform of the real component of the complex image derived
from the LB simulation shown in Fig. 1a. The total number of pixels
in the image was 65,536 (256 pixels � 256 pixels). The rapid
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ifferences transform, a wavelet transform and a curvelet transform of the complex
bsolute value of the transform of the real component of the complex image derived
e transform domains is recorded in only a small number of voxels in the image. (b)

he complex image derived from the velocity image shown in Fig. 1a.
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decrease in the intensity indicates that all four domains show a
high degree of sparsity, with approximately 70% of pixels contain-
ing negligible signal. The image intensity domain contains the few-
est pixels with negligible signal, and thus is not as sparse a
representation as the other domains. All three transform domains
show a rapid initial decrease followed by an extended tail in the
distribution. An example of the spatial finite-differences transform
domain is given in Fig. 5b. Most of the image is dark, confirming
that the image is sparsely represented in this domain. Given the
similarity of the results for the transform domains in Fig. 5a, it is
not obvious which domain will yield the best sparse representa-
tion. However, the tail in the curvelet domain is the most pro-
nounced and this is the slowest transform to calculate. Therefore,
these results suggest that the most promising sparse domains to
consider are the spatial finite-differences and the wavelet domain.

Previous reports have indicated that in order to accurately
reconstruct the under-sampled image, the number of k-space
points sampled should be between 2 and 5 times the number of
sparse coefficients [1]. For the sparse transforms calculated here
this would suggest that the number of k-space samples required
would be in the region of 50% of the full data set. It was found that
the reconstruction error with the spatial finite-differences trans-
form was significantly less than that obtained with the wavelet
transform. Fig. 6 shows a plot of the ‘2-error for reconstructions
of the LB velocity map in Fig. 1a using the spatial finite-differences
transform, and from 15% through to 75% of the full k-space data
set. The reconstruction error increases as the fraction of k-space
sampled decreases. The error increases rapidly when less than
30% of k-space is sampled.

4.1.3. Modifications to the CS algorithm
Two modifications to the CS algorithm were examined: the

addition of a second sparse transform and the use of a mask of
the image to guide the reconstruction. The effect of each of these
modifications on the accuracy of the reconstruction will now be
described.

The use of two sparse transform domains was detailed in Eq.
(3). Two additional domains were considered: the image domain
and a wavelet transform domain. It was found that incorporating
either of these second sparse transforms led to a reduction of the
reconstruction ‘2-error of <0.5%. This was accompanied by an
increase in the reconstruction time of about 50% for the image
domain and about 100% for the wavelet transform. Therefore, as
the decrease in error was not significant, a second transform do-
main was not considered to be beneficial.
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Fig. 6. The effect of decreasing the sampling fraction on the accuracy of the image
reconstructed using CS. The data were taken from the LB simulation of water flow
through a packed bed of 3 mm diameter spheres. The reconstructed error follows
closely an exponential decay (dotted line) for sampling fractions between 75% and
15%.
The incorporation of the prior knowledge of the signal distribu-
tion was found to significantly improve the CS reconstruction. This
is achieved straightforwardly by acquiring a high SNR image of the
system prior to obtaining the velocity-encoded images; a mask
data set is readily derived from this image which is used to bias
the reconstruction such that signal only appears where it is ex-
pected. This helps to eliminate the misregistration of the signal
resulting from the under-sampling of k-space. For the LB velocity
map shown in Fig. 1a, the reconstruction ‘2-error can be reduced
from 14% without utilising the mask to 10% by utilising the mask.
This is a substantial improvement in the reconstruction that effec-
tively allows a reduction in the sampling fraction of �10%, depend-
ing on the desired final reconstruction error. The additional mask
required in this approach is easily obtained from a liquid- or gas-
phase image of a stationary bead pack and significantly increases
the accuracy of the reconstruction. Therefore, the use of a mask
data set makes a significant impact on the data acquisition time
or spatial resolution of the resulting gas- or liquid-phase velocity
images without a significant complication to the reconstruction.

4.1.4. Effect of noise on the reconstruction
The SNR of the acquired data will influence the accuracy of the

reconstruction. This effect was investigated by systematically add-
ing Gaussian noise to the LB simulated flow field. Fig. 7 shows the
accuracy of the reconstruction as a function of increasing standard
deviation of the noise distribution for sampling fractions of be-
tween 21% and 75%. The signal was normalised to a value of 1 such
that the SNR is simply the inverse of the standard deviation of the
noise. The reconstruction error is seen to increase with decreasing
sampling fraction and to increase with increasing noise, as would
be expected.

The increase in the error shown in Fig. 7 with increasing noise is
slower than would be expected for a fully-sampled image
reconstructed using a conventional Fourier reconstruction. Thus,
for a typical data acquisition in which the SNR might be �10, the
‘2-error in a data set that is reconstructed using CS but sampling
30% of k-space is 15%, compared with an ‘2-error of 8% for the
fully-sampled data set. Furthermore, for higher sampling fractions
the reconstructed error using a CS approach is less than the error in
a fully-sampled image that is reconstructed with a conventional
Fourier transformation. For example, if we consider the data with
a 75% sampling of k-space the reconstructed error is less than
the error arising in a fully-sampled data set if the noise standard
deviation exceeds �0.1, which corresponds to a SNR of �10. It
should be noted that the decrease in error is not due to the
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Fig. 7. The effect of increased noise on the accuracy of the CS reconstruction is
shown for sampling fractions of (.) 75%, (d) 50%, (j) 39%, (�) 30% and (N) 21%. The
solid line indicates the error arising from a fully-sampled image at the given noise
level. The noise is given by a Gaussian function with the standard deviation
indicated. The signal intensity in the image was normalised to a maximum value of
1.
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under-sampling directly, but rather due to the requirement for
sparsity in the reconstruction. These results indicate that a CS
approach can be used to achieve a desired accuracy in the recon-
structed image in a given time by optimising the combination of
the sampling fraction and the signal averaging used.

4.2. Experiments

The CS algorithm developed in the previous section is now used
to reconstruct images of the velocity for single-phase gas and li-
quid flow through a packed bed of 5 mm glass spheres, using real
experimental data. The CS algorithm was first applied to the acqui-
sition of a liquid-phase velocity image. The aim of the experiment
was to compare a velocity image reconstructed with CS using an
under-sampled k-space data set, directly with a fully-sampled k-
space image acquired at the same spatial resolution. The CS recon-
struction was then used to acquire gas-phase velocity images at a
resolution that was greater than that which could be obtained
using fully-sampled k-space data.

4.2.1. CS velocity imaging of the liquid phase
The CS reconstruction algorithm developed in Section 4.1 was

applied to velocity measurements of liquid-phase flow. Fig. 8a
shows an image of the velocity of water flowing through the
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Fig. 8. Example of the use of CS to image the velocity of liquid flowing through a packed
an image with only 28% sampling. The velocity was measured in the axial direction (i.e.
178 lm � 178 lm and the slice thickness was 1 mm. The total imaging time was (a) 43
error of the velocity in the under-sampled image was 11% and the error on the total flow
reader is referred to the web version of this article.)
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Fig. 9. Analysis of the sparsity in an experimental phase-encoded velocity image. (a)
transform, a wavelet transform and a curvelet transform. The intensity in each case w
complex image. The image was obtained for water flowing through a packed bed of 5 mm
resolution of 178 lm � 178 lm. (b) Example of the sparsity in the spatial finite-difference
bead pack of 5 mm diameter spheres at a flow rate of 5.3 ml s�1.
This corresponds to a Reynolds number of 46, based on the
superficial velocity of the water and the diameter of the beads.
At this Reynolds number the flow will be stable. Fig. 8a was ob-
tained from a full k-space acquisition. Fig. 8b shows an equiva-
lent reconstruction of the velocity distribution using the CS
algorithm defined by Eq. (5), when only 28% of the k-space data
were acquired. Applying Eq. (10) to these data gives an ‘2-error
of 11%. The SNR in these images was 58, which is equivalent to
rnoise = 0.02, and thus this estimate of the error is consistent with
that shown in Fig. 7.

Fig. 9a shows the rank-ordered distribution of the intensity for
the image domain, the spatial finite-differences, a wavelet trans-
form and a curvelet transform of the data used to obtain Fig. 8a.
As with the data derived from the LB simulation, the plot decays
rapidly for all three transform domains, indicating that few pixels
in these domains contain non-zero values. This confirms that the
image can be represented sparsely in all three domains; the spatial
finite-differences domain will be used for the reconstruction as this
was found to be most suitable with the simulated data. An example
of the spatial finite-differences domain image is shown in Fig. 9b.
As with Fig. 5b, Fig. 9b is mostly dark confirming that the image
can be sparsely represented in the spatial finite-differences
domain.
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To check the validity of the CS reconstruction, the measured
velocity distribution was used to calculate the total flow rate
through the bead pack for the fully-sampled and CS reconstruc-
tions. Fig. 10 shows a comparison of the flow rates determined
from the MR images for three different image slices with the flow
rate of water measured by the mass flow controller. The root mean
squared error in the flow rate was 1.7 kg h�1, or 3%, for both the
fully-sampled k-space data and the CS reconstruction. These values
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Fig. 11. Images of the velocity distribution for SF6 flow through a packed bed of 5 mm d
and reconstructed using a conventional Fourier transform. The resolution is 460 lm �
350 lm � 350 lm � 1.5 mm. The acquisition time for both (a) and (b) was 37 min. The
higher spatial resolution to be acquired with no loss of SNR.
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Fig. 12. High resolution images of the velocity distribution for SF6 flow through a packe
fully-sampled k-space data set and reconstructed using a conventional Fourier transform
230 lm � 230 lm � 1.5 mm and the acquisition time was 90 min. The flow rate of SF6

averaging for a given acquisition time and spatial resolution.
compare favourably with the error in the flow rate of the mass flow
controller of 1%. These results suggest that the CS reconstruction
has negligible effect on the quantitative reconstruction of the
velocity distribution and that the CS algorithm has been imple-
mented correctly on the spectrometer.
4.2.2. CS velocity imaging of the gas phase
The CS reconstruction algorithm developed and validated in

Sections 4.1 and 4.2.1 was applied to velocity measurements in
the gas phase. Fig. 11 shows gas-phase velocity measurements
for SF6 flow through a packed bed of 5 mm diameter spheres using
a conventional full k-space acquisition and a CS reconstruction
where only 33% (28 points in the phase-encoding direction) of k-
space was sampled. The flow rate of SF6 was (15 ± 1) � 10�6 m3 s�1

at a pressure of 4.9 bar absolute. This corresponds to a Reynolds
number of 260, based on the superficial velocity of the gas and
diameter of the beads. Fig. 11a shows an image of a full k-space
acquisition at a resolution of 460 lm � 460 lm. This image was ac-
quired in 19 min. Fig. 11b shows a CS reconstruction at a resolution
of 350 lm � 350 lm, acquired in the same total acquisition time.
The total flow calculated from the fully-sampled data set was
18 � 10�6 m3 s�1 and from the CS reconstruction was
16 � 10�6 m3 s�1. These measured flow rates are within 13% and
5% of the flow rate measured with the rotameter for the full k-
space acquisition and the CS reconstruction, respectively. Thus,
the error in the total flow rate measured using CS was within the
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was (15 ± 1) � 10�6 m3 s�1. The CS reconstruction allows significantly greater data
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uncertainty of the flow rate measured with the rotameter
(15 ± 1 � 10�6 m3 s�1). The reduction in the error in the CS recon-
struction may be due to the higher resolution that is obtained,
which reduces partial volume effects in the reconstruction. These
results demonstrate that utilising a CS reconstruction can improve
the spatial resolution achievable without compromising the quan-
titative reconstruction of velocity measurements.

The CS image reconstruction approach was then used to dem-
onstrate the improved spatial resolution that can be achieved, as
compared to full k-space sampling, for an acquisition time of
90 min. Fig. 12 shows a comparison of (a) a fully-sampled velocity
image obtained at a resolution of 230 lm � 230 lm with 928 scans
and (b) a CS reconstruction obtained at the same resolution but
from only 30% of the full k-space data set, thereby allowing signal
averaging over 3072 scans. The image reconstructed using CS
(Fig. 12b) shows significantly less noise than the fully-sampled im-
age (Fig. 12a) whilst retaining detailed measurements of the high
resolution features of the flow field. The image obtained from the
CS reconstruction gives an 11-fold decrease in the voxel size of
the image compared with the highest resolution gas-phase velocity
images we have reported [16]. By under-sampling the k-space
data, the CS reconstruction allows an increase in the SNR of the
resulting velocity image and hence an increase in the accuracy of
the reconstruction. The SNR in the fully-sampled image was 5.2,
compared with 21 in the under-sampled image reconstructed
using CS. The ‘2-error of the velocity images, given the sampling
fraction and SNR, can be estimated from Fig. 7 to be 15% and 10%
for the fully-sampled and CS image, respectively. Furthermore,
the error in the total flow measurement decreased from 8% to
3%, which is within the experimental uncertainty of the rotameter
measurement.
5. Conclusions

In this paper we have presented a CS reconstruction for phase-
encoded velocity imaging. The reconstruction algorithm was dem-
onstrated for simulated flow data and liquid-phase imaging where
comparison with the full k-space acquisition was possible. These
results demonstrate that for a sampling fraction of �30% of the full
k-space data set the velocity image can be recovered with an ‘2-er-
ror of 11%, which is below the visually detectable limit. The total
flow rate calculated from the liquid-phase velocity measurements
was found to be within 3% of the independently measured flow
rate (using a mass flow meter) for both the conventional and CS
velocity images. Furthermore, the absolute error in the CS recon-
struction was demonstrated to be unbiased, confirming that the
reconstruction artefacts are negligible.

The CS algorithm was then used to obtain gas-phase velocity
images at a spatial resolution that was previously prohibitively
time-consuming to acquire. The final image resolution was
230 lm � 230 lm with a 1.5 mm slice thickness. To the best of
our knowledge, the voxel size in these images is an order of mag-
nitude less than in any previously reported gas-phase velocity
images acquired using MR imaging. The total flow calculated from
these CS velocity images was found to be within 5% of the flow rate
determined using a rotameter, which is within the experimental
uncertainty of the rotameter measurement.

The CS image reconstruction with the smallest ‘2-error for a gi-
ven sampling fraction was found using the spatial finite-differ-
ences as the sparse transform. The reconstruction was further
improved by utilising prior knowledge of where the signal should
be located. This was achieved by using a mask of the image
obtained prior to commencing the flow experiments. The use of a
second sparse transform, such as the wavelet transform or the
image itself, was also considered. This was found to only margin-
ally reduce the reconstructed error at the cost of an increased
reconstruction time, and was therefore not employed.

This paper has demonstrated the potential for CS to improve the
reconstruction of sparse phase-encoded velocity imaging. The ap-
proach is simple to implement and is applicable to any MR tech-
nique for velocity imaging. It should also be possible to further
improve the reconstruction by incorporating more specific prior
knowledge of the system, for example by using sparse coding tech-
niques to design a dictionary specifically for a given class of veloc-
ity measurements [35,36]. A further possibility is to use more
detailed signal models, such as the embedded zero trees of the
wavelet transform [37,38] to further reduce the number of coeffi-
cients required to reconstruct the image.
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